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Abstract

In this paper, nonparametric estimation of conditional quantiles of a nonlinear time
series model is formulated as a nonsmooth optimization problem involving asymmetric loss
function. This asymmetric loss function is nonsmooth and is of the same structure as the
so-called ‘lobsided’ absolute valued function. Using an effective smoothing approximation
method introduced for this "lobsided’ absolute value function, we obtain a sequence of ap-
proximate smooth optimization problems. Some important convergence properties of the
approximation are established. Each of these smooth approximate optimization problems
is solved by the optimization algorithm based on the sequential quadratic programming
approximation with active set strategy. The proposed approach is compared with an ap-
proach proposed by Yao and Tong (1996) through some empirical numerical studies using
simulated data and the classic lynx pelt series. In particular, the empirical performance
of the proposed approach is comparable with that of the Yao-Tong approach in the ideal
cases for the latter, but otherwise it outperforms the Yao-Tong approach at the expense of

increasing the computation time by 4 to 8 folds for the numerical examples studied here.
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1 Introduction

In forecasting, it is often required and, indeed, is desirable to compute prediction intervals.
Prediction intervals may be derived from a model-based approach or a nonparametric
approach. Here, we focus on nonparametric prediction intervals. Two general approaches
for constructing nonparametric prediction intervals are highest density prediction intervals
and equal tail prediction intervals (Box and Tiao, 1973). The latter approach is more
popular owing to its ease of construction. An equal tail interval is constructed by excluding
equal percent of smallest and largest values. In the case of predicting a continuous random
variable, say, Y, given the covariate X = z, a (1 — ) x 100% prediction interval is equal

to (ga/2(7), q1—a/2(z)), Where go() is the conditional a-quantile defined by the equation
a=P{Y <gu(z) | X =z}, (1)

for 0 < a < 1. We assume that the conditional quantiles are uniquely defined. It is
well-known (Koenker and Bassett, 1978) that the conditional a-quantile g, (z) minimizes

the following asymmetric loss function.
go(z) = arg HgnE{Ll,a(Y —a) | X =z}, (2)

where E denotes the mathematical expectation, and

L) { 1-a)lyl y<o, 5
ay y > 0.

Estimation of g,(z) can be achieved by minimizing a sample version of E{L; o(Y —
a) | X = z}. Often, ¢,(z) is assumed to belong to a parameterized class of functions,
e.g., linear functions or splines. In some such cases, the conditional a-quantiles can be
estimated by solving some linear programming problems which admit several efficient

numerical algorithms; see Portnoy and Koenker (1997) and the references therein.

We consider the case for which g, (z) is a smooth function of z. Furthermore, we focus
on the case of m-step ahead prediction with data generated from a stationary pth order
nonlinear autoregression, i.e., Y =Y; and X = (Yi—p,, YVipp—1,- - ,Y}_m_pH)T, where the
superscript T' denotes the transpose and m often equals 1. Yao and Tong (1996) (see
also Chan and Tong, 2001) developed an approximate solution to this problem within the

framework of the following multi-step forecasting model:

Y: = hin(Xt) + gm(Xt)er, (4)



where A, : R — (0,00), g : R — (0, 00), e; is a sequence of independent and identically
distributed (iid) random variables of zero mean and finite non-zero variance, and e; is
independent of X;. Yao and Tong (1996) adopted the local polynomial approach (Fan and
Gijbels, 1996) to approximate g,(-) around x by its first order Taylor approximation, i.e.,

qa(u) ~ a+bT(u_$), (5)

where the superscript T’ denotes the transpose, so that a = g, (z). Now, a can be estimated

by minimizing the loss function
ZLl,a(Ys _a_bT(Xs _x))k(Xs _Jf';h)a (6)
S

where the summation is over all data cases for which Y; and X are defined, and k(z; h) is
kernel function often taken as the multivariate normal probability density function (pdf)
with zero mean and covariance matrix h?I, where I is the identity matrix, and & is the
bandwidth parameter. In practice, the optimal bandwidth parameter has to be estimated
from the data. Here, we focus on the problem of developing an efficient and accurate
method for minimizing the loss function (6), assuming that the bandwidth parameter is
given. Minimizing the loss function (6) is a nonsmooth optimization problem, as L; 4(y) is
not a smooth function. Thus, all the available efficient smooth optimization techniques are
not applicable. To tackle this problem, Yao and Tong (1996) introduced the a-conditional
expectile 74, of Y given X = z which is defined by

Tam = argmin B{Lyo(Y —a) | X =z} (7)

where

(1-a)y* y<o,
Lo(y) = { )
ay y > 0.

Similar to (6), the conditional expectile can be estimated by minimizing the following loss

function

ZLQ,a(Ys _a_bT(Xs —z))k(Xs — z;h). (8)

Yao and Tong (1996) have shown that the conditional a-quantile of Y given X = z,

denoted as gq,m (), is equal to a corresponding conditional expectile 73 ,,,, where

agy — Ele(e,<qey )
2B{etl{e—gz}} — (1~ 20)q5

with ¢¢ being the a-quantile of the noise distribution.

B= /3(057 .’L‘) (9)
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The significance of this result is that by solving a smooth optimization problem (8)
with a taken as 3 (here, § is defined by (9)), one gets the optimal solution to the original
optimization problem (6). Although the approach of Yao and Tong (1996) is numerically
convenient and mathematically elegant, it is only applicable to cases under the following

two conditions.

Condition 1. The model defined by (4) holds, which assumes that all m-step conditional distri-
butions are obtained from the common distribution of e; by some location-scale

change.

Condition 2. The common distribution of e; has to be specified in order to compute (9).

For convenience, the common distribution of e; is usually taken as the normal distribu-
tion. Although the second condition can be relaxed by further modeling the shape of the
noise distribution, this will greatly complicate the Yao-Tong method. Here, we introduce
an alternative approach for solving (4) by approximating L o(y) in (6) by a new smoothing
approximation introduced by Jennings, Wong and Teo (1996), leading to an approximate
smooth optimization problem for the estimation of g4, (z), the conditional a-quantile of
Y given X = z. (Below, we shall focus on the case m = 1, for simplicity.) This approach
relaxes the preceding two conditions. In particular, our approximate smooth optimiza-
tion approach can be readily extended to provide an alternative approach to computing
parametric nonlinear quantile regression estimates (Koenker and Park, 1996), which is an

interesting future research problem.

For fixed z, the conditional quantile g, (z) is an increasing function of «. This mono-
tonicity property guarantees that the (true) equal tail prediction intervals enjoy a desirable
property, namely, they are nested so that any prediction interval is contained in another
prediction interval that has a higher prediction probability. As an illustration, a 90%
prediction interval is always a sub-interval of its 95% counterpart for predicting Y given
X = z. An estimation scheme that preserves the monotonicity property of the conditional
quantiles is said to be monotone. The Yao-Tong estimator and the proposed estimator
of the conditional quantiles need not be monotone, as shown by an example in section
3. However, an estimation scheme, say S, can be easily modified to be monotone by the
following device. Let {0 < a1 < ag < -+ < agmy1 < 1} be an equally-spaced fine par-
tition of the unit interval [0,1]. We first get the estimate ¢,,,,,(z) using the estimation

scheme S. Then we estimate gqo, (z) for m > k > 1 one by one in a downward manner.



Specifically, given the estimate §qo, (), we estimate ¢,,_, (z) using the method S with the
constraint that g,, ,(z) < §o, (z). Similarly, we estimate g, (z) for m +2 <k <2m +1
one by one in an upward manner so that g, () is estimated by method S subject to the
constraint that ga, () > §a,_, (). For any arbitrary 0 < a < 1, go(z) can be estimated
by linear interpolation or extrapolation on the logistic scale of a. The last step is not
needed if the grid has already contained all the as of interest. In section 3, we illustrate
by an example that using this device may improve the performance of both the Yao-Tong

method and the proposed method.

The rest of the paper is organized as follows. Section 2 introduces this new smoothing
approximation of L; o(y) that is continuously differentiable but the second derivative is
discontinuous at a finite number of points. We derive two important convergence properties
of the global minimizer of the approximate smooth objective function to that of the original
objective function, as the amount of smoothing decreases to zero; all proofs are deferred
to Appendices 1 and 2. Section 3 reports some empirical numerical studies comparing the
performance of the new approach with that of the Yao-Tong approach, using simulated

data and the classic lynx pelt series.

2 Smoothing Approximation

As discussed in Section 1, the estimation of the conditional a-quantile ¢, (-) defined by (2)
can be achieved via minimizing a sample version of E{L; (Y —a) | X = z}. Following
Yao and Tong (1996), we consider the approximation of g,(x) around z by its Taylor
approximation, which gives (6) such that a = go(z). Now, (a,b) can be estimated by

minimizing the loss function (6), which is recalled in the following.

F(a,0) =3 Lio(Y; —a— b (X, — 2))k(X, — z;h) (10)

where « € [0,1] and Ly 4 is defined by (3). Clearly, minimizing the cost function (10) is
a nonsmooth optimization problem, as it contains a nonsmooth function L ,. Currently

there is no efficient optimization algorithm for minimizing the nonsmooth loss function f.

On the other hand, there are many efficient numerical methods for smooth optimization
problems, such as the sequential quadratic programming approximation with active set

strategy; see, for example, Teo, Goh and Wong (1991). To use these smooth optimization



techniques, we need to smooth the corner of the asymmetric loss function L ,. Of the
many ways of doing this, we choose the following smooth approximation due to Jenning,

Wong and Teo (1996).

az if ar >4
1wy = O+ @))/20 f0<ar<d (11)
Lo 2+ (1-a)z)?)/26 if —6<(1—a)z <6
(Oé ) if (a — 1).’E < —0.

The main reasons for such a choice are given as follows:
(i) L ,(z) is continuously differentiable.
(ii) It has the minimum at the same place as the original function L; ,(z), and satisfies

the following properties.

0< L} (2) — Lia(z) < 6/2 (12)

(iii) The smooth approximation possesses some desired convergence properties to be
presented in the following two theorems.

By approximating L o(z) by L‘ls’a(w), the objective function (10) becomes:
ZL —a—b'(X, — 2))k(Xs — z;h). (13)
It is easy to see that

0< f%(a,b) — Zk (14)

Theorem 2.1 Let (a®*,b%*) and (a*,b*) be optimal solutions of the optimization problems
(12) and (10), respectively. Then,

0 < f(a®*, %) — f(a*,b") Zk

Theorem 2.1 shows that, by minimizing the approximate smooth loss function (13),
the solution (a®*, b%*) obtained will give rise to the cost for which its deviation from the
optimal cost can be made as tight as we please by reducing the parameter §. The following
theorem shows that the minimizer of the approximate objective function converges to that

of the original objective function as the smoothing parameter § — 0.



Theorem 2.2 Let (a*,b*) = argmin f(a,b) and (a®*,b%*) = argmin f(a,b). If there

ezists a unique minimizer of f(a,b), then lims_,o(a®*, b%*) = (a*,b*).

This approximation scheme requires the specification of the smoothing parameter ¢
and a stopping rule. A simple stopping rule is to keep halving § until, for example, the
difference between the successive minima, is less than a pre-specified tolerance level, say,
0.0001; see Appendix 3 for the more complex stopping rule used in the studies reported

below.

3 Numerical Experiment

The proposed approach will be applied to two examples. The first one uses some simulated
data, while the second one uses the classic lynx pelt series. The optimization algorithm
detailed in the previous section was implemented in C using the optimization software
package CFSQP by E.R. Panier, A.L. Tits, J.L.. Zhou and C.T. Lawrence, see Lawrence,
Zhou and Tits (1997). Our algorithm codes are used to smooth two examples and are

available upon request to the authors; see Appendix 3.

3.1 Simulated Data

We evaluate our new approach using Monte Carlo. The simulation model is the first order

Auto-Regressive (AR(1)) Model:
Y, = ¢Yi1 + ey, (15)

where X; = Y; 1. This linear model implies that the conditional a-quantile is linear in z
so that g, (z) can be estimated by minimizing the loss function (6) with the kernel function
there dropped. We deliberately choose this simple model so that the new approach can
be compared with the Yao-Tong approach without the confounding issue of having to
choose the bandwidth. For this linear case, a simplex-based modified Barrodale-Roberts
algorithm (see Koenker and d’Orey, 1987) is a more efficient algorithm. However, as our
main focus is on nonlinear time series, we do not include the simplex-based algorithm in

the comparison. Furthermore, we assess the performance of each of these two approaches



as follows. We first estimate the a-conditional quantile of Y, given X, = Y,_; using all
past observations up to and including s < £ — 1 in the summation in (6), with the kernel
function there dropped. Then, we compute the empirical relative frequencies that Y is
less than the conditional a-quantile for M < £ < 200. Each experiment is replicated 1000

times, where M is set to be 60.

Table 1 reports the simulation results where ¢ is varied over {—0.9, —0.5,0.0,0.5,0.9}.
For each fixed ¢, the errors are taken as t-distributed with d.f. equal to oo, 30, 20, 15, 10,5, 3
(recall that ¢ with infinite d.f. is the standard normal distribution). We computed the
conditional a-quantiles with & = 0.05 to 0.95 with an increment of 0.05. When computing
the Yao-Tong estimates of the conditional quantiles, (9) is computed as if the errors were
normally distributed. This was done to examine the effect of misspecification in the Yao-
Tong approach. Hence, for t-distributed errors with small d.f., the Yao-Tong estimate
will suffer from systematic bias. We compare the two approaches in terms of the average
(respectively, maximum) absolute deviation between the empirical relative frequencies and
the nominal probabilities that the observations are less than the conditional quantiles, and
also in terms of computation time (in seconds). All computations were done with HP PC
with Intel(R) Pentium(R) 4 CPU 1800MHz AT/AT compatible and 523760 KB RAM on
Microsoft Windows 2000 Service Pack 2.

| Table 1 about here |

Results from Table 1 suggest the following. For the conditional quantile estimator
based on the proposed method, the empirical relative frequencies are generally close to
the nominal probabilities, both in terms of mean absolute deviation and mean maximum
absolute deviation. There is a very slight tendency of larger discrepancy between the
empirical relative frequencies and the nominal probabilities with larger magnitude of the
AR(1) coefficient, more so for a positive coefficient than the negative coefficient of equal
magnitude. Overall speaking, the mean absolute deviations between the empirical relative
frequencies and the nominal probabilities are about same for different degrees of freedom
of the t-distributed noise. On the other hand, for the conditional quantile estimator based
on the Yao-Tong method, the mean absolute deviations between the empirical relative
frequencies and the nominal probabilities increase with the extent of misspecification of the
error distribution, i.e. the smallness of the degrees of freedom of the #-distribution. When

the error distribution is almost correctly specified, the proposed method and the Yao-Tong



method are of comparable accuracy but the proposed method outperforms the Yao-Tong
method when the specified error distribution is further from the true distribution. Note
that the proposed method requires longer computational time than the Yao-Tong method,

about seven to eight times longer.

3.2 Real Data Analysis

For real data analysis, we take up the classic set of (log-transformed) lynx pelt data
collected from the McKenzie river region of Canada from 1821 to 1934; see Tong (1990)
and Chan and Tong (2001). Consider the following general nonlinear time series model
for the lynx data.

Yy = f(Xy) + g(Xi)er, (16)

where Y; is the log-transformed lynx data at year ¢, X; = (Y;—1,Yi—2,- -+, Yi—p)7, and {e;}
is a sequence of iid errors that are independent of past values of Y. Clearly, E(Y;|X;) =
f(X3). The order p is generally taken as between 2 and 4. We have repeated the analysis of
the previous sub-section to the (standardized) log lynx data with the order from p =1 to
4; the first order is included for curiosity. Specifically, we first estimated the a-conditional
quantile of Yy given X, = (Yp_1,Ys_9,--- ,Yg_p)T using all past observations up to and
including s < £ — 1 in the summation in (6); « takes values from 0.05 to 0.95 with
increment 0.05. Then, we computed the empirical relative frequencies that Yy is less than
the conditional a-quantile for M < £ < 114. The Yao-Tong estimators were computed
by assuming that the error distribution is normal. Table 2 reports the average absolute
deviation and the maximum absolute deviation between the empirical relative frequencies
of the conditional quantiles and their nominal counterparts with M = 30 (60) and the
bandwidth A = 0.57 that was adopted by Yao and Tong (1996). The proposed method
results in more accurate estimates than the Yao-Tong estimates with ten to eighty percent

of reduction in average (maximum) absolute deviation.

‘Table 2 about here‘

Recall that an estimation scheme is monotone if §,(z) < §g(«) whenever o < 8. Both
the Yao-Tong method and the proposed method turned out to be non-monotone for the
lynx example. Hence, we adopted the device described in the last but one paragraph

in section 1 to render the two methods monotone. The results are reported in Table 3.
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Compared with Table 2, it can be seen that both methods have been improved by imposing
the monotonicity constraints, with the proposed method gaining more improvement owing
to the fact that in its unconstrained form, the proposed method has a higher tendency of

reversing the order of the conditional quantiles than the Yao-Tong method.

| Table 3 about here |

From a prediction perspective, a prediction scheme should be judged in terms of two
criteria, namely, (i) the closeness of the empirical coverage rate to the nominal prediction
probability of the interval and (ii) the shortness of the prediction interval. So far, our
discussion is based on the first criterion. Indeed, this is reasonable for cases with a fixed
set of covariate. However, with different order of the process, the covariate X; contains
different amount of information for predicting Y;. The determination of p, the order of the
process, should then depend on both criteria. In Table 3, we have also reported the average
length of the 90% equal tail prediction intervals for Y; given X; and the corresponding
empirical coverage rate, enclosed by parentheses, of these prediction intervals for both
estimation schemes and under different order. It is interesting to note that the average
length of the 90% prediction interval decreases with the order but there is a sharp drop
from order 1 to order 2. Also, the Yao-Tong method tends to produce shorter intervals
than the proposed method on average. The empirical coverage rates are all lower than
the nominal 90%, with the discrepancy being larger with a higher order. Also, in terms of
the empirical coverage rate of the 90% prediction interval, the Yao-Tong method and the
proposed method are comparable. Thus, the better performance of the proposed method
in terms of average absolute deviation and the maximum absolute deviation between the
empirical relative frequencies of the conditional quantiles and their nominal probabilities
do not carry over to the extreme quantiles; indeed, the situation is clearly presented in
Figure 1 which plots the empirical relative frequencies of the conditional quantiles against
their nominal counterparts for the proposed method and the Yao-Tong method. The
graphs suggests that when the order is equal to 1, the Yao-Tong method performs poorly
compared to the proposed method especially for intermediate « values, (ii) both methods
do not do well for estimating the extreme quantiles for p > 2 and (iii) both methods

perform very poorly for p = 3 and 4.

Figure 1 about here
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We then repeat the above exercise by using larger bandwidth and with M = 60. The
results are reported in Table 4 and plotted in Figure 2. The proposed method clearly
outperforms the Yao-Tong method for larger bandwidths. The plots suggest that (i) for
intermediate values of «, the conditional a-quantiles, from both methods, tend to have
lower empirical frequencies than the nominal probabilities, and (ii) for « close to 0 and 1,
the estimators are more accurate when p = 2. Note that with larger bandwidth, the 90%
prediction intervals have coverage rates closer to 90%, at the expense of lengthening the

intervals.

Table 4 and Figure 2 about here‘

Through the simulations in the previous subsection and the real data analysis here,
we have demonstrated that the proposed method outperforms the Yao-Tong method for
estimating conditional quantiles of nonlinear time series models, with fixed bandwidth.
An interesting future problem is to devise methods for improving the coverage rates of the

prediction intervals.
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Appendix 1

Proof of Theorem 2.1

Since (a®*,b>*) is an optimal solution of the optimization problem (12), we have, by
(13),
)
F2(a®*,6%%) < fo(a*,b*) < f(a*,b%) + 5 > k(X — @3 h) (A1)
S

Using (13) again and (A1), it follows that
F(ab55) < e, b) < Jla,b) + § S ROXG — a3h). (A2)
Since (a*,b*) is an optimal solution of the optimization problem (10), we have, by (A2),
0 < f(a®*,b%*) — f(a*,b*) Zk s — 3 h).

This completes the proof.

Appendix 2
Proof of Theorem 2.2

Observe that f(a,b) and f%(a,b) are convex functions. Furthermore, it is clear that

f%(a,b) decreases and converges to f(a,b) uniformly as § approaches to zero. If

lim (a”*,6%*) # (a*,b")
6—0

then there exists a monotonic sequence {d; > 0} such that lim;_,o §; = 0 and lim;_, o (a%*, b%*) =
(&,I;) # (a*,b*). However, in this case, we will have, by Theorem 2.1, (13) and the conti-
nuity of the function f,
f(a*,b*) = lim f%(a%*,6%*) > lim f%(a%, %) > lim f(a%,b%) = f(a,b)
1—00 1—00 71— 00

This is a contradiction, and hence the proof is complete.
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Appendix 3
Pseudo-codes for the Numerical Ezperiment and Data Analysis

Let N be the sample size. Set e = 0.0001, say, or some number that is small on the scale

of the data spread. Below, the true objective function in the inner loop is f;4(a,b, z) =
2;11 L1 ,o(Ys —a—b" (Xs —z))k(Xs — z; h) while the corresponding approximate objective
function is ft‘{a(a, byx) =] L‘ls,a(Ys —a—b"'(X, —2))k(X; —z;h); X, and Y are data.
For the simulation experiment, the kernel function k(X — z;h) = 1. For the real analysis,
the kernel function was set as the normal probability density function with zero mean and

covariance matrix equal to Al where I is the identity matrix.
Set indez = [10,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19]
Let quantile be an N — M + 1 by 19 array cleared.
Loop fori=1:19
a = index[i]/20.0;
7 =0;
Loop fort=M : N

oldf = f = 10000, olda = a =0, oldb =b =0,

§=0.1,
Ir = Xt.
while § > €

if(index[i] < 10)

b = ] 4 b
(CL(S, 6) arg a<quantile[t—n]\14l£—11][indem[i—i—l]] ft,a (CL, ’ l‘)

else if(index[i] > 10)

b _= ] (5 b
(CL5, (5) are a>quantile[tfn1\14l£1][indew[ifl]] ft,a (CL, ’ :L‘)
else
(as,bs) = arg min fga(a, b, z)
endif

14



quantile[t — M + 1][index[i]|=as
[ = ftalas, bs, )
9 = fi(as,bs, z) which is the gradient
if(|f] < eand ||lg][ <e)
if(|f — oldf|/|oldf| < € or |olda — as| + |oldb — bs| < €) break;
else if(| f — oldf| < € and |olda — as| + |oldb — bs| < €) break;
endif
oldf = f, olda = a = ag, oldb = b = by,
d=4/2
End while
fY:<a)j=j+1
End loop for ¢
o; =j/(N—-M+1)
End loop for ¢

As remarked earlier, we implemented the optimization required in the inner loop via
the optimization software package CFSQP. At the end of the inner loop, a is the conditional
a-quantile of Y; given X;. The outputs at the end of the outer loop are a; which are the
relative frequencies of Y; that are less than or equal to the conditional j/20-quantiles of
Y; given X; for M <t < N where the conditional quantiles are estimated based on data
collected up to and including ¢ — 1.
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Figure Captions

Fig. 1. Empirical percents of Y; that are less than the a-conditional quantiles given
X = (Y1, ,Yt_p)T that are estimated from the log lynx data up to and including Y;_1,
with the estimation by the proposed (ZTC) method and the Yao-Tong (YT) method. The

bandwidth h = 0.57. Empirical percents are on the y-axis and « on the z-axis.

Fig. 2. Empirical percents of Y; that are less than the a-conditional quantiles given
X = (Y1, -- ,Y}_p)T that are estimated from the log lynx data up to and including Y;_1,
with the estimation by the proposed (ZTC) method and the Yao-Tong (YT) method. M

equals 60. Empirical percents are on the y-axis and « on the z-axis.
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Table 1: Comparison of the empirical performance of the current (ZTC) method and the
Yao-Tong (YT) method, based on data of size 200 that are generated according to (15)
with ¢-distributed noise. The predictor X; = Y;_1. All experiments are replicated 1000

times.
d.f. | mean of average | mean of maximum | mean computing time
absolute deviation | absolute deviation
ZTC YT 7Z7TC YT 7Z7TC YT
=09
oo | 0.03022 | 0.03110 | 0.06612 | 0.06708 | 18.14 2.467
20 | 0.03014 | 0.03071 | 0.06670 | 0.06678 | 19.28 2.722
10 | 0.03030 | 0.03173 | 0.06680 | 0.06760 | 17.58 2.392
5 | 0.03036 | 0.03484 | 0.06625 | 0.07381 | 18.30 2.512
3 | 0.03046 | 0.04418 | 0.06695 | 0.09229 | 17.50 2.410
¢»=0.5
oo | 0.02852 | 0.02937 | 0.06382 | 0.06511 | 17.19 2.316
20 | 0.02823 | 0.02833 | 0.06334 | 0.06303 | 17.50 2.356
10 | 0.02845 | 0.03002 | 0.06367 | 0.06529 | 17.15 2.312
5 | 0.02915 | 0.03309 | 0.06450 | 0.07159 | 17.96 2.426
3 | 0.02884 | 0.04267 | 0.06399 | 0.09004 | 17.63 2.396
¢»=0.0
oo | 0.02798 | 0.02956 | 0.06355 | 0.06508 | 17.02 2.261
20 | 0.02860 | 0.02951 | 0.06408 | 0.06486 | 17.35 2.316
10 | 0.02903 | 0.02977 | 0.06437 | 0.06480 | 18.06 2417
5 | 0.02840 | 0.03256 | 0.06332 | 0.07071 | 18.06 2.407
3 | 0.02824 | 0.04211 | 0.06386 | 0.08934 | 19.28 2.613
¢=-05
oo | 0.02865 | 0.02893 | 0.06464 | 0.06403 | 17.50 2.360
20 | 0.02883 | 0.02948 | 0.06409 | 0.06500 | 17.31 2.319
10 | 0.02849 | 0.02937 | 0.06405 | 0.06462 | 17.41 2.352
5 | 0.02853 | 0.03263 | 0.06308 | 0.07046 | 18.50 2.484
3 | 0.02842 | 0.04213 | 0.06410 | 0.08966 | 17.30 2.352
¢=-0.9
oo | 0.02816 | 0.02930 | 0.06341 | 0.06448 | 18.03 2.441
20 | 0.02851 | 0.02900 | 0.06328 | 0.06347 | 18.38 2.535
10 | 0.02819 | 0.02901 | 0.06365 | 0.06433 | 17.53 2.407
5 |0.02842 | 0.03217 | 0.06346 | 0.06987 | 19.23 2.620
3 | 0.02876 | 0.04196 | 0.06374 | 0.08914 | 19.22 2.605




Table 2: Deviation of the empirical relative frequencies from the nominal probabilities
for the conditional a-quantiles of the nonlinear autoregressive model (16), computed by
the proposed (ZTC) method and the Yao-Tong (YT) method. The bandwidth is set to
h = 0.57.

average absolute deviation | maximum absolute deviation | mean computing time
7ZTC YT 7TC YT 7ZTC YT
p=4
30 | 0.1443 0.1957 0.3030 0.3466 123 20
60 | 0.1215 0.1783 0.2227 0.2984 96 16
p=3
30 | 0.08545 0.1350 0.1853 0.2362 80 12
60 | 0.07081 0.1344 0.1500 0.2240 62 8
p=2
30 | 0.05728 0.1072 0.1206 0.1761 48 6
60 | 0.04977 0.1076 0.1318 0.1921 36 5
p=1
30 | 0.02353 0.1115 0.05294 0.2467 34 3
60 | 0.04450 0.1405 0.08182 0.3012 27 3
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Table 3: Deviation of the empirical relative frequencies from the nominal probabilities for

the conditional a-quantiles of the nonlinear autoregressive model (16), computed by the

proposed (ZTC) method and the Yao-Tong (YT) method with monotonicity constraints.
The bandwidth is set to h = 0.57.

M | mean abs. deviation | max abs. deviation | mean computing mean 90% interval length
time (empirical coverage %)
7ZTC YT 7ZTC YT ZTC YT 7TC YT
p=4
30 | 0.1294 0.1883 0.2794 0.3348 186 52 0.7231 (49.41) | 0.5778 (49.41)
60 | 0.09857 0.1668 0.1682 0.2803 142 35 0.6441 (58.18) | 0.5796 (50.91)
p=
30 | 0.07833 0.1313 0.1500 0.2244 155 27 0.8110 (62.35) | 0.7668 (63.53)
60 | 0.06412 0.1286 0.1500 0.2058 107 21 0.8060 (63.64) | 0.7476 (58.18)
p=
30 | 0.05263 0.1034 0.1088 0.1643 99 21 1.072 (72.94) | 1.026 (76.47)
60 | 0.04306 0.1018 0.1136 0.1739 81 14 1.074 (72.73) | 1.034 (74.55)
p=
30 | 0.01889 0.1090 0.05294 | 0.2467 64 14 1.928 (84.71) | 1.769 (82.35)
60 | 0.04115 0.1366 0.08182 | 0.3012 38 11 1.904 (81.82) | 1.756 (80.00)
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Table 4: Deviation of the empirical relative frequencies from the nominal probabilities for

the conditional a-quantiles of the nonlinear autoregressive model (16), computed by the

proposed (ZTC) method and the Yao-Tong (YT) method with monotonicity constraints.

h | mean abs. deviation | max abs. deviation | mean computing mean 90% interval length
time (empirical coverage %)
7ZTC YT ZTC YT 7Z7TC YT ZTC YT
p=
1 | 0.06938 0.1525 0.1500 0.2588 181 39 0.9347 (70.91) | 0.8433 (65.45)
2 1 0.05550 0.1152 0.08636 | 0.1897 208 53 1.139 (80.00) | 1.049 (76.36)
4 1 0.03780 0.1142 0.08636 | 0.2159 261 49 1.264 (83.64) | 1.125 (83.64)
p =
1|0.07177 0.1133 0.1409 0.1838 86 14 1.061 (72.73) | 0.9701 (72.73)
2 1 0.05215 0.1085 0.1409 0.2103 88 15 1.177 (85.45) 1.140 (83.64)
4 | 0.03876 0.1095 0.07727 | 0.2103 94 16 1.267 (90.91) 1.205 (81.82)
p =
1 | 0.04498 0.1028 0.08182 | 0.1861 66 8 1.208 (80.00) 1.139 (80.00)
21 0.03828 0.1066 0.09546 | 0.2103 59 8 1.254 (87.27) 1.233 (83.64)
4 1 0.03254 0.1018 0.06818 | 0.1921 51 9 1.335(92.73) 1.254 (85.45)
p=
1 | 0.04402 0.1338 0.1045 0.3194 37 7 1.9188 (83.64) | 1.751(78.18)
2 1 0.03541 0.1290 0.08636 | 0.2830 26 7 1.9392 (83.64) | 1.830(78.18)
4 1 0.03780 0.1223 0.08182 | 0.2830 26 8 1.9678 (81.82) | 1.862 (78.18)
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